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ONE-DIMENSIONAL QUASISTATIC KINEICICS*

SUMMARY

A comparison between the quasistatlc method and the direct method of
solving one-dimensional, zero-power reactor transient problems was made.
Calculations were performed for a slab mockup of a heavily absorbing SRP
production reactor using QX1 and $LQ, both of which employ the improved
quaslstatlc method, and WIGLE which utilizes a direct approach.

The results of the aixidysupport the following conclu8ion8 and observations:

(1) Each of the three codes accurately calculates one-dimensional,
zero-power reactor transient problems.

(2) The solution obtained by the quasistatic method is a less
sensitive function of the time interval between spatial
calculations (i.e., has less error) than the solution
obtained by the direct method. In other words, for com-
parable accuracy, larger time steps between spatial calcula-
tions can be used in the quasistatic method than In the
direct method.

* The authors gratefully acknowledge M. Becker and D. A. Meneley for
their interest and helpful suggestions during the course of this work.
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(3) ~he code e?ploy;ng ~he di~e~t method, WIGLE, ~equired much..
leSS COmpUter time SOr Solvlng One-dlmenslonal, two-energy
group, zero-power reactor trans%ent problems than the
quasistatic code, QX1.

INTRODUCTION

Multi-dimensional reactor transient calculations utilizing the direct
finite-difference method of solution are quite expensive when performed
on the present generation of computers. In order to reduce computing
costs without introducing unacceptable inaccuracies, more approximate
methods of solution are being developed. One 8uch method, proposed and
being develoned by Menelev and his associates at Araome National
Labo~atory, Is th; “impro;ed quasi.static”method.l -

In this method, the space,
factored as follows:

!3(~,E,t)=T(t) t

energy, and time-dependent

;,E,t)

flux $(i,E,t) iS

where the shape function, ~(?,E,t) is a slowly varying function of time
relative to the fast varying amplltu~e function, T(t). The central idea
of the quasistatic method is that o[r,E.t) may be comDuted less often
during the course of a transient than-@(?;E,t_). Thus; a savings in
computer time should be realized since a significant portion of any
transient calculation is the time required to calculate the space- and
energy-dependence of the neutron flux.

A primary consideration in the evaluation and subsequent implementation of
any new method is accuracy. Meneley investigated the accuracy of the
quasistatlc method without feedback for both thermal and
having generation times ranging from 10-5 sec. to 3. lo-~~;eactorsHe found
that, although the accuracy of the method was entirely adequate for all
the cases that he considered, the error associated with the method was
much larger for thermal systems withllarge generation times than for fast
systems with small generation times. A similar result was also found by
Fuller.2

Hence, the primary objective of thts work is to investigate the accuracy
of the quasistatic method with respect to SRP reactors which have genera-
tion times of the order of 10-4 sec. In order to accomplish this objective,
a comparison between calculations performed using the quasistatic method
with calculations performed using a direct finite-difference (the so-called
“exact” method) approach was ma e.

!!
Two codes employing the improved

quasistatic mthod, $L!Qand QX1
8

, and one code utilizing the direct
method, WIGLE , were used in the investigation. Qxl and WIGLE are
production status, one-dimensional codes originally developed at Argonne
National Laboratory and Eettis Atomic Power Laboratory, respectively.
$LQ is a one-dimensional code developed at SRL for use as a research tool.
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In this reDort. a description of the isrvrovedauasistatic method is
presented.- Caiculationai results, which illustrate the accuracy of the
method, are presented for two types of perturbations - a highly localized
perturbation and a nearly uniform perturbation. Execution times for the
two production codes, QX1 and WIGLE, are

THE QUASISTATIC METHOD

The improved quasistatic kinetics method
solving the followlng equations:

-1 ~ $(;,t)
~ E- [

=~g(~,t)v-~(~,t) +

M—

also presented.

is an approximate

.

method for

J(1-@(i,t) Lf(F,t)

+ L “~i Xi Ci (F,t) +g (F,t)

i=l

+Jzt) =PixT(F,t)g(zt) - Ii Ci(;,t) i = 1,...,M

(1)

(2)

where ? is the position vector, t is time, and V
-1 is a G x G diagonal

matrix containing the inverse velocities for G energy groups.
.

A doubly
underlined quantity denotes G x G square matrix, a singly underlined
quantity denotes G x 1 matrix, and a scalar is denoted by a quantity
with no underline. ~ is the flux vector, D Is the diffusion coefficient
(diagonal) matrix, and A is the removal pl&s inscattering matrix. f3
is the delayed
‘pectrum, and #eutr0n7racti0n,

~ is the prompt neutron fission
denotes the trans~ose of the production cross section

vector. M den~tes the number of delayed neutron precursor families,
~ is the delayed neutron fission spectrum, and X is the decay constant
fhr precursor family i. Ci is precursor density ~or precursor family 1,
S is the external neutron source vector, and Pi is the delayed neutron
Traction for precursor family i.

The quasistatic method can a180 be used to solve the thermal/hydraulic
equations simultaneously with the above neutronic equations. However.
this wo?k is concerned only with the neutronfc equations.

The fundamental aasumptlon in the quaslstatic method is that the :
vector may be-separated into a shape function that is slowly vary
with time, $(r,t), and a more rapidly varying amplitude function,
as shown be~ow:

lUX

(3)
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1(pg(;,t), ~
-1 )~(~,t) = constant = y (4)

where P is adjusteclso that y = 1 at t = O. w is a weight function
that is usually selected to be the un erturbe~ steady state acljoint
solution of Equation (l). 8Equation ( ) determines uniquely.the
separation indicated by Equation (3). More importantly, the conaition
that y ~ 1 for all time provides a constraint which must be satisfied
throughout the transient.

The central idea In the quasistatic method is that a low orclerapproxi-
mation with large integration time steps may be used for the calcula-
tion of ~(r,t); whereas, a high order approximation with small integra-
tion time steps is uses for the calculation of T(t). The separation
indicated by Equation-(3 should permit the use of larger time steps for
thS calculation of ~(r,t
O(r,t).

1 than would be requires for the calculation of
Thus, since a very time-consuming portion of any space-time

~ransient calculation is the spatial calculation at each time step, a
reduction in the computation time per transient should be realized
provided the additional computation time required for the calculation of
T(t) and also the time required to satisfy the constraint equation are
not significant. Substitution of Equations (3) and (4) into Equations
(1) and (2) yields, after some rearrangement, the following equations:

t) + L Al gi(t) +Q(t) (5a)
i=l

f3i(t)

~Ei(t) =~W) -Xi?i(t) i=l,. ..,M

where:

P

(( [
; !!*Q“g7- ~ + (W)xp +—.-

A ~ ~iq~’};)

(5b)

* The brackets Indicate an inner product defined as

()/

y,~12 =

Volume ‘W1”””WG) (;:::”::) ($) ‘F
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!
-Li(t-t’)

ci(~,t) = Pi ~T(Z,t!) ~($,tj) e dtI

‘o

-xi(t-to)

-be cl(~,to) , i = 1,...,M

1(1-b) #

Thus, instead of solving Equations (1) and
static approach is to solve Equations (5),
the constraint equation, Equation (4). It
no approximations have been made thus far.
solution of Equations (4-7).

Numerical Solution of Equations (4-7)

(7)

H
2 directly, the quasi-
6 , and (7) along with
is important to note that
Next consider the numerical

Equations (4-7) are solved numerically u~ing a hiera~chy of three
different integration time intervals, At E Atj a At , as shown—
below:

DPST-72-266

(6)

$

I I I I I I

t: y’ J J
n 2 3

)
1-1 i
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The shape functio~ ~(~Bt) is assumed to vary linearly over the largest
time interval, At – t - t . A simple backward difference in time is
used to approxlma?e Eq~atio~-1(7) which gives the following:

In shorthand notation Equation (8a) becomes
11

where definitions of the o erator ~ and the driving function ~ are
f’obvious from comparing (8a and (8K).

~%~i~nt~6~’t~he fission density
FT@ is assumed to vary linearly

n n-l which gives the ~o~lowing, using ~ = ~ T,
n

Ci(:,t;-l) i=l,...,M

(8b)

(9)
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The an and bn above are evaluated simultaneously with the solution of
Equations (2$) and (5b) using a fourth order Runge-Kutta approximation
over the At time intervals. Values for the coefficients, P,
~are computed using their imer product definitions at the t~’t!~; ~?nts.
Quadratic interpolation is used to obtain intermediate values of the
coefficients at the tk time points.

Equation (8b) is solved in a somewhat unusual manner which involves the use
of Equati& (4).

Specifically, expand

Therefore, Equation (8b) becomes

Q1 ~(;,t:) = Q2 L(F,t:) + z .

A conventional
follows:

1 t+l =
gl

where & is the
/

iterative approach for solving the above equation is as

:2 @&
*+2 (lOa)

iteration index and

*4)

(lOb)

with ~ = (l...l)T.

3As discussed by Meneley, numerical”difficulties are encountered.:
when using the above procedure for transients in the neighborhood of
prompt critical. In order to circumvent this problem, Meneley proposed
the following procedure which utilizes Equation (4).

(lla)
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where

Note that the .4iteration in the above procedure results in a con-
verged value of y and a converged shape function $. This procedure
has been implemented successfully in the QX1 and ~LXJcodes. For a
more detailed discussion of this procedure see Reference (3).

A general description of the solution algorithm is outlined below:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Assume everything 1s known at time t~-l.

Extrapolate ~ linearly with respect to time from ~(~,t~-l)

Evaluate p, tJ,A, Bi at t: using their tnner product
definitions.

Interpolate P,

Solve Equation

Update Ci(~,t)

~,h, ~i between t~-l and t: at the tk

(5) and evaluate a;, b: out to t: .

to

to

If t; = t;, solve
Y.

t = t; using Equation (9).

next tj point

Equation (11)

If Ynew = 1, go to the next AtB

points.

and

for

repeat steps 3 - 6.

a new ~(F,~~),e,nd,a,new

(llb)~

interval and repeat steps 2 - 8.

~ 1> replace k(~, tB)Bwiththe r- L(~,tB)and rep-t
He~k?ew2 - 10 fog the same & interval, or repe@t steps 2 - 10
for a shorter At interval.

DISCUSSION OF RESULTS AND CONCLUSIONS

A comparison between results obtained with the two quaslstatic codes, QX1
and @lXl,with results obtained with WIGLE was made for the one-dimensional
slab reactor shown in Figure 1. The steady-state, two-group parameters
that were used are presented In Table I.

~~p;~~~~~~ :;ca somewhat

This particular reactor is
heavy SRP lattice which has a generation time

. For the first two transients, the perturbation was
initiated by decreasing the thermal group capture cross section in Region
-!
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TABLE I

UNPERTURBED TWO GROUP PARAMETERS FOR PRODUCTION REACTOR MOCKUP
(TRANSVtiRSEBUCKLING - 50 uB)

D’ ‘;
~’+j

Vzi
Group i s f

~i
c

1 1.385 .010796 .008547 .0020927 .001401

2 .8792 .018100 -o- .026304 .009802

1 1.385 .010796 .008547 .oo20917 .001401

2 .8792 .019778 -o- .020348 .o~~48

GROUP

1

2

3

h

5

6

DELAYED NEUTRON PARAMETERS

$’
li(sec-l)

.0009856 1.55

.0043140 .209

.0017650 .0247

.00008052 .00280

.00003679 .000147

.Ooooollg .00000141
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In all of the calculations described above, the “average” time interval
between spatial (and energy) calculations was small - approximately .02
seconds. An “average” time Interval is reported since QX1 has an auto-
matic time step algorithm which selects the points in time, non-uniformly,
at which the shape function is to be calculated.

In order to obtain more detailed information on the accuracy of the quasi-
static method versus the direct method, the sensitivity of each solution
to the average time interval between spatial calculations was investigated.
The power at 5 seconds and the power at 10 seconds versus the average time
Interval between spatial calculations are presented in Figures 8
respectively, for the transient Initiated by a 5-second ramp in ‘ZtRdl:’
Region 3. The same information for the transient Initiated by th~ nearly
uniform perturbation is presented in Figures 10 and 11. As may be observed
in each of the four figures, the quaslstatic solution Is less sensitive to
the average time interval than the direct solution. In other words, for
the same average time Interval between spatial calculations, the error
associated with the quasistatic method is less than the error associated
wfth the direct method.

Finally, as additional Information, the computer running time (i.e., CPU
time) versus the average time interval between spatial calculations Is
presented in Figures 12 and 13 for two of the transients discussed above.
From the results presented, it is obvious that WIGLE is considerably more
efficient than QX1 for solving the type of problems considered in this
work; namely, one-dimensional, two-group, reactor transient problems with
no engineering feedback. However, a careful distinction should be made
at this point between efficiency of codes and efficiency of methods. QX1
is a multigroup (up to 30 energy groups) code which includes, in addition
to the neutronics model, an elaborate engineering feedback model that is
characteristic of an LMFBR. WIGLE is strictly a two-group code with an
unsophisticated feedback model. QX1 has a generalized, automatic time
step selector; whereas, in WIGLE, the time steps are Input by the user.
These differences, as well as programming efficiency, in the two codes,
cause a difference in computational time.

An example of one methodical difference which affects the computation
time comparison is the way QX1 performs a spatial calculation at each
time step versus the way WIGLE performs the same calculation at each time
step. Because WIGLE is only a two-group code, it uses a non-iterative
technique to perform the spatial calculation at each time step as opposed
to QX1 which uses an iterative technique to solve the same type of prob-
lem simply because QXl must be able to handle up to 30 energy groups. In
other words, the QX1 iterative method is less efffcient for performing a
two-group spatial calculation than the non-iterative WIGLE method.
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In order to ascertain the improvement In the QXl running time which would
occur If QX1 used the non-iterative WIGLE technique to perform the spatial
calculation, a CPU timer was employed in each code to measure the actual
time that each spent in doing the spatial calculations. This information
was then used to obtain an estimate of the computation time that QX1 would
require if it utilized the non-iterative technique employed in WIGLE. The
results are presented in Figures 12 and 13. Note that the Improvement in
QX1 commutation time is more significant for the transient initiated bv
the lockllzed perturbation than-for the ”translent”inltiated by the ne<rly
uniform perturbation. Nevertheless, there
differences in the two codes that WIGLE is
QX1 for solving one-dimensional, two-group
feedback.

HLD:m~g

still remains sufficient
definitely more economical than
problems with no engineering
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